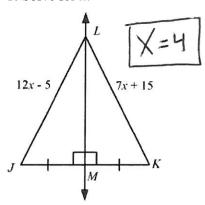
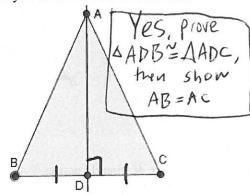
Unit 6 Review – Relationships within Triangles

Perpendicular Bisector

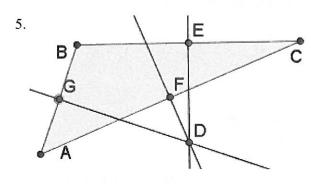

Definition: a line that goes through the midpoint of a line segment and is also perpendicular to that line segment.

Property: every point on a perpendicular bisector is equidistant to the endpoints of the segment it bisects.


Point of concurrency: Circumcenter

Property of the Circumcenter – Equidistant to the vertices.

1. Solve for x.


2. Can you assume ABC is isosceles?

3. Write the equation of the perpendicular bisector through points:

a)
$$(1,5)$$
 $\sqrt{= \times - 1}$ $(7,-1)$

$$(-4,9)$$

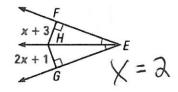
5. Find x and y given segments GD, ED and FD are perpendicular bisectors:

a)
$$FC = 2x + 7$$
, $AC = 4y + 6$, $BD = 3x + 1$, $DC = y + 5$

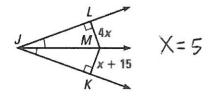
b)
$$DA = 13 - x$$
, $BD = y - 8$, $DC = 11$

c)
$$CD = x + y$$
, $BD = 11y - x$, $DA = 12$

Definition: A line that divides an angle into two congruent angles.


Property: Every point on a perpendicular bisector is equidistant to the sides of the angle it bisects.

Point of Concurrency: Incenter


Property of the Incenter: Equidistant to the sides of the triangle.

6. Find FH.

Angle Bisector

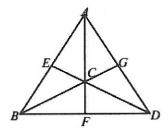
7. Find MK.

Median

Definition: A line connecting a vertex of a triangle to the midpoint of the opposite side.

Property: None

Point of Concurrency: Centroid


Property of a Centroid: Centroid is twice the distance from the vertex as it is from the opposite side.

8. If BG = 24, what is the length of \overline{CG} ?

If
$$BC = 9$$
 and $CG = 2x + 1$, solve for x. $7/4$

If
$$AC = y$$
 and $CF = 2.5$, solve for y. $\gamma = 5$

If
$$CD = 14.4$$
 and $EC = 8z$, solve for z. $\frac{14.4}{16}$

Altitude

Definition: A line segment from the vertex of triangle perpendicular (or a line coincident) to the opposite side.

Property: None

Point of Concurrency: Orthocenter

Property of an Orthocenter: If the triangle is acute, the orthocenter is inside the triangle.

If the triangle is right, the orthocenter is on the triangle.

If the triangle is obtuse, the orthocenter is outside the triangle.

9. Given the vertices of the triangle, determine if the orthocenter is inside, on or outside the triangle.

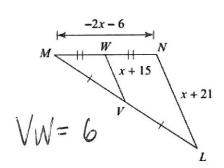
a) L(0, 5) M(3, 1) N(8, 1)

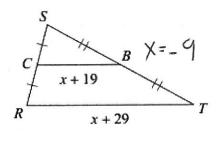
b) A(-4, 0) B(1, 0) C(-1, 3)

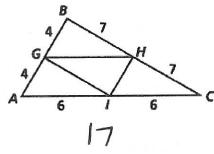
c) T(-2, 1) U(2, 1) V(0, 4)

Midsegment

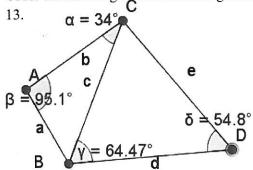
Definition: A line segment connecting two midpoints of two sides of a triangle.


Property: 1. The midsegment is parallel to the third side of the triangle.


2. The midsegment is half the length of the third side of the triangle.


10.Find VW

11.


12. Find the perimeter of GHI

Order the side lengths from least to greatest.

9 < 6 < C < d < e