Post Course

Post Course Test

Find the length of \overline{ST} .

- 3. J(-3, 7) and K(4, -2) are endpoints of a line segment. Find the coordinates of the midpoint M. Find the distance between the endpoints of \overline{JK} .
- **4.** The midpoint of JK is M(2, 5). One endpoint is J(-4, 2). Find the coordinates of endpoint K. Find the distance between the endpoints of \overline{JK} .

Use the diagram to decide whether the statement is true or false.

- 5. Points G, C, and H are collinear.
- **6.** Plane S and plane T intersect at line m.
- 7. Points A, B, and C lie on plane T.
- **8.** \overrightarrow{CG} and \overrightarrow{FE} are opposite rays.
- **9.** Point C lies on plane S and plane T.
- **10.** Plane S is perpendicular to plane T.

Solve the equation.

11.
$$9x - 16 = 7x + 12$$

12.
$$5(3x + 2) = -6x - 11$$

Find the value of x or y. State which theorems or postulates you used.

Find the value of x that makes $m \parallel n$.

Write an equation of the line that passes through the given point and is (a) parallel to and (b) perpendicular to the given line.

17.
$$(-2, -1), y = -3x + 2$$

18.
$$(-3, 1), x = 0$$

Answers

- 1. _____
- 2. _____
- 3. _____
- 4. _____
- 5
- 6
- 7.
- 8. _____
- 9. _____
- 44
- 12. ____
- 13. _____
 - 14. _____
- ----
- 15. _____
- 16. _____
- 17. a.____
- 18. a.____
 - b.____

Post Course

Post Course Test (continued)

Graph triangle $\triangle \textit{MEG}$ with vertices M(1, 1), E(5, 3), and G(3, 5) and its image Answers after the translation.

19.
$$(x, y) \to (x - 1, y - 2)$$
 20. $(x, y) \to (x + 3, y - 6)$

20.
$$(x, y) \rightarrow (x + 3, y - 6)$$

- 19. See left.
- 20. See left.
- 21. <u>See left.</u>
- 22. <u>See left.</u>

Graph the polygon with the given vertices and its image after a rotation of the given number of degrees about the origin.

21.
$$M(-4, 4), L(-5, 1), K(-2, 2);$$
 180°

22.
$$M(0, 0), E(-2, -2), T(-1, 4),$$

Find the measure of each angle.

23.

24.

 \overline{TU} is a midsegment of $\triangle QRS$. Find the value of x.

25.

Post Course

Post Course Test (continued)

Find AC. Identify the theorem you used.

27.

28.

Answers

7			
	12		

Find the value of each variable in the parallelogram.

29

30

29. _____

Give the most specific name for the quadrilateral. Explain your reasoning.

31.

32.

31. _____

-	 	 _

Determine whether the triangles are similar. If they are, write a similarity statement.

33.

 $\begin{array}{c|c}
D & 3\frac{3}{5} \\
6 & 7\frac{1}{5}
\end{array}$

32. _____

33. _____

34. _____

35. _____

Find the value of the variable

34.

35.

