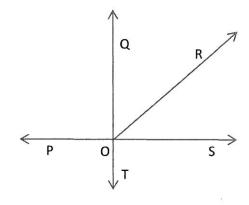
Given: $< POT \ and < TOS$ are linear pair;

 $< POT \cong < TOS$

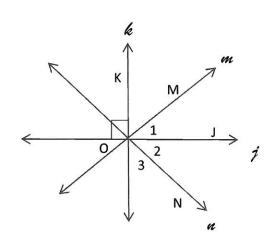
Prove: $< QOR \ and < ROS$ are complementary



STATEMENTS	REASONS
$< POT \ and \ < TOS$ are linear pair; $< POT \ \cong < TOS$	Given
$\overrightarrow{PS} \perp \overleftarrow{QT}$	Linear Pair Perpendicular Theorem
m < QOR + m < ROS = < QOS	Angle Addition Postulate
< QOR and < ROS are complementary	If two acute angles have sides that are perpendicular, the angles are complementary.

Given: $j \perp k$; $< 1 \cong < 3$

Prove: m \perp n



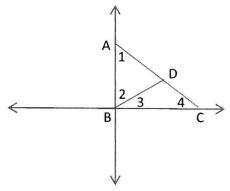
STATEMENTS	REASONS
$j \perp k$; $< 1 \cong < 3$	Given
m < 2 + m < 3 = < JON	Angle Addition Postulate
< 2 and < 3 are complementary	If two acute angles have sides that are perpendicular, the angles are complementary.
< 1 and < 2 are complementary	Congruent Complements Theorem
m \(\price a	If two acute angles are complementary, their sides are perpendicular.

Given: < 1 and < 2 are complementary;

< 1 and < 4 are complementary;

< 4 and < 3 are complementary

Prove: $\overrightarrow{AB} \perp \overrightarrow{BC}$



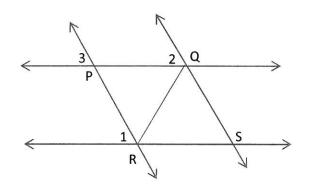
	*
STATEMENTS	REASONS
<pre>< 1 and < 2 are complementary; < 1 and < 4 are complementary; < 4 and < 3 are complementary</pre>	Given
m < 1 + m < 2 = 90 m < 1 + m < 4 = 90 m < 4 + m < 3 = 90	Definition of Complementary Angles
< 2 ≅ < 4 < 1 ≅ < 3	Congruent Complements Theorem
m < 2 = m < 4 m < 1 = m < 3	Definition of Congruent Angles
m < 2 + m < 3 = 90	Substitution Property of Equality

< 2 and < 3 are complementary	Definition of Complementary Angles
$\overleftrightarrow{AB} \perp \overleftrightarrow{BC}$	If two acute angles are complementary, their sides are perpendicular.

Given: $\overrightarrow{PR} \mid \mid \overrightarrow{QS}$;

< 1 \(\ceps < 2 \)

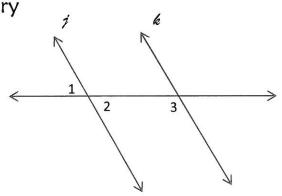
Prove: $\overrightarrow{PQ} \mid \mid \overrightarrow{RS}$



STATEMENTS	REASONS
$\overleftarrow{PR} \mid \mid \overleftarrow{QS}$	Given
< 2 ≅ < 3	Corresponding Angles Theorem
< 1 ≅ < 2	Given
<1 ≅ < 3	Transitive Property of ≅
$\overrightarrow{PQ} \mid \mid \overrightarrow{RS}$	Converse of Corresponding Angles Theorem

Given: < 1 and < 3 are supplementary

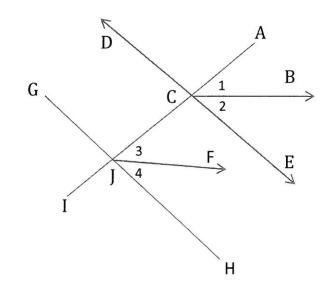
Prove: ; | | &



STATEMENTS	REASONS
< 1 and < 3 are supplementary	Given
< 1 and < 2 are vertical angles	Definition of Vertical Angles
< 1 ≅ < 2	Vertical Angles Postulate
< 2 and < 3 are supplementary	Congruent Supplements Theorem
j 6	Consecutive Interior Angles Theorem

Given:
$$\overrightarrow{CB}$$
 bisects $<$ ACE ; \overrightarrow{JF} bisects $<$ AJH ; \overrightarrow{DE} $| | \overrightarrow{GH}$

Prove $\overrightarrow{CB} \mid |\overrightarrow{JF}|$



STATEMENTS	REASONS
\overrightarrow{CB} bisects $< ACE$; \overrightarrow{JF} bisects $< AJH$	Given
< 1 ≅ < 2 < 3 ≅ < 4	Definition of Angle Bisector
$\overrightarrow{DE} \mid \mid \overrightarrow{GH}$	Given
$< ACE \cong < AJH$	Corresponding Angles Theorem
m < 1 + m < 2 = < ACE m < 3 + m < 4 = < AJH	Angles Addition Postulate
< 1 ≅ < 3	Transitive Property of ≅

$\overrightarrow{CB} \mid \mid \overrightarrow{JF}$	Corresponding Angles Theorem