The Pythagorean Theorem

Objective: State and apply the Pythagorean Theorem.

Pythagorean Theorem In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the legs.

If $\angle C$ in $\triangle ABC$ is a right angle, then $a^2 + b^2 = c^2$.

Example 1 Find the value of x. (Remember that the length must be a positive number, so you are only interested in positive roots.)

a.

Solution

a.
$$x^2 = 5^2 + 12^2$$

= $25 + 144 = 169$
 $x = \sqrt{169} = 13$

b.
$$(2\sqrt{5})^2 = x^2 + 4^2$$

$$20 = x^2 + 16$$

 $4 = x^2$

$$2 = x$$

Find the value of x. Give exact answers.

3.

The Pythagorean Theorem (continued)

Example 2 Find the value of x.

а.

b.

c. AC = 12; BD = 16

Solution

a. The figure is a rectangle, so opposite angles are ≅.

$$x^2 = 6^2 + 9^2$$

= 36 + 81

$$x = 3\sqrt{13}$$

b. The altitude drawn to the base of an isosceles triangle is 1 to and bisects the base.

$$x^2 + 5^2 = 13^2$$

$$x^2 = 144$$

$$x = 12$$

c. The diagonals of a rhombus are \bot bisectors of each other.

$$x^2 = 6^2 + 8^2$$

$$x^2 = 100$$

$$x = 10$$

Find the value of x. Give exact onswers.

9

10

11.

12

13.

14.

15.

- 17. Find the length of the diagonals of a square with perimeter 56.
- 18. The diagonals of a rhombus have lengths 18 and 24. Find the perimeter of the rhombus.
- 19. A rectangle has diagonals of 5 cm and its width is $\sqrt{3}$ cm. Find the length of the rectangle.