Trigonometric Ratios

In any triangle ABC where angle C measures 90°, we can define $\sin A = \frac{\text{side opposite } A}{\text{hypotenuse}}$ $\cos A = \frac{\text{side adjacent to } A}{\text{hypotenuse}}$ $\tan A = \frac{\text{side opposite } A}{\text{side adjacent to } A}$ $A = \frac{\text{adjacent side}}{\text{side adjacent to } A}$

1. For each diagram, name (i) the hypotenuse, (ii) the side opposite θ , (iii) the side adjacent to θ

- 2. In \triangle TRA, \angle R is a right angle.
 - a) In terms of TR, RA, and TA, find sin T, cos T, tan T.
 - b) In terms of TR, RA, and TA, find sin A, cos A, tan A.
- 3. Find $\sin A$, $\cos A$, and $\tan A$ in terms of p, q, and m for each figure.

- 4. Find the following trigonometric ratios. Give you answers correct to the ten-thousandth place.
 - a) $\sin(20^\circ)$
- b) $\sin(25.3^{\circ})$
- c) $\sin(42.7^{\circ})$

- d) $cos(20^\circ)$
- $e) \cos(20.4^{\circ})$
- $f) \cos(28.4^{\circ})$

- g) $tan(45^\circ)$
- h) $\tan(64.4^{\circ})$
- i) $tan(50.5^{\circ})$

- j) $\sin(46^\circ)$
- k) tan(35°)
- l) $cos(28^\circ)$

- m) $\sin(24.5^{\circ})$
- n) $tan(43.4^{\circ})$
- o) $\cos(54.8^{\circ})$

5. Find ∠A to the nearest tenth of a degree if:

a)
$$\sin A = 0.3542$$

b)
$$\cos A = 0.3542$$

c)
$$\tan A = 1.2450$$

d)
$$\sin A = 0.8702$$

$$e)$$
 $\cos A = 0.8702$

$$f$$
) $\tan A = 10.4569$

$$g$$
) $\sin A = 0.5000$

h)
$$\cos A = 0.5000$$

i)
$$\tan A = 25.5000$$

$$j$$
) $\sin A = 0.1452$

$$k)$$
 $\cos A = 0.1452$

$$l$$
) $tan A = 63.9800$

$$m$$
) $\sin A = 0.7249$

$$n)$$
 $\cos A = 0.7249$

$$o)$$
 $\tan A = 1543.2555$

6. Find the measure of $\angle A$ to the nearest tenth of a degree if:

a)
$$\sin A = \cos(25^\circ) \cdot \tan(10^\circ)$$

b)
$$\cos A = \tan(45^\circ) \cdot \tan(30^\circ)$$

c)
$$\cos A = \cos(53^\circ) \cdot \tan(46^\circ)$$

$$d$$
) $\sin A = \sin(30^\circ) \cdot \tan(30^\circ)$

$$e$$
) $\tan A = \cos(63^\circ) \cdot \tan(82^\circ)$

$$f$$
) $\tan A = \tan(17^\circ) \cdot \tan(73^\circ)$

$$g$$
) $\tan A = \tan(25^\circ) \cdot \tan(65^\circ)$

$$h$$
) $\tan A = \tan(70^\circ) \cdot \cos(45^\circ)$

7. In the given right triangles, find the values of *x* and *y*. Give your answers correct to the hundredths place.

b)

c)

d)

8. In the given triangles, use trigonometry to find the values of *x* and *y* to the nearest tenth. Check your answers by other means.

b) 78 x

- 9. Use trigonometry to answer each of the following:
 - a) A ladder, 6 m long, leans against a wall and makes an angle of 60° with the ground. How high up the wall does the ladder reach? How far from the wall is the foot of the ladder?
 - b) A man starts at O and wishes to reach a point P, 300 m northeast of O. If he gets to P by first walking due north and then due east, how far will he have to walk in each direction?
 - c) From the top of a building 20 m high, a man watches people walking along the street. If the angle of depression of the foot of a pedestrian is 60°, how far is the pedestrian from the foot of the building?
- d) The shadow of a pole is 4 m long when the angle of elevation of the sun is 60°. Find the length of the shadow when the angle of elevation of the sun is 45°.
- e) The length of the shadow of a 16 m tall tree is 8 m. What is the angle of elevation of the sun?
- f) A man whose eye is 1.5 m above the ground is standing 15 m from a tree which is 12 m high. What is the angle of elevation of the top of the tree from his eye? Give your answer correct to the nearest degree.