8–4 Special Right Triangles

Objective: Determine the lengths of two sides of a 45°-45°-90° or a 30°-60°-90° triangle when the length of the third side is known.

45°-45°-90° Theorem In a 45°-45°-90° triangle, the hypotenuse is $\sqrt{2}$ times as long as a leg.

A 45°-45°-90° triangle is an isosceles right triangle with congruent legs. If the length of a leg is a, then the length of the hypotenuse is $a\sqrt{2}$.

Given the length of the legs, find the length of the hypotenuse of each 45°-45°-90° triangle.

b.
$$3\sqrt{2}$$

c.
$$5\sqrt{6}$$

Solution

a.
$$5\sqrt{2}$$

b.
$$3\sqrt{2} \cdot \sqrt{2} = 6$$

c.
$$5\sqrt{6} \cdot \sqrt{2} = 5\sqrt{12} = 10\sqrt{3}$$

Example 2 Given the length of the hypotenuse, find the length of the legs of each 45°-45°-90° triangle.

a.
$$8\sqrt{2}$$

c.
$$4\sqrt{3}$$

Solution

a.
$$\frac{8\sqrt{2}}{\sqrt{2}} = 8$$

b.
$$\frac{10}{\sqrt{2}} = \frac{10 \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} = \frac{10\sqrt{2}}{2} = 5\sqrt{2}$$

b.
$$\frac{10}{\sqrt{2}} = \frac{10 \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} = \frac{10\sqrt{2}}{2} = 5\sqrt{2}$$
 c. $\frac{4\sqrt{3}}{\sqrt{2}} = \frac{4\sqrt{3} \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} = \frac{4\sqrt{6}}{2} = 2\sqrt{6}$

Complete the table.

	1.	2.	3.	4.	5.	6.	7.	8.
а	3	?	?	1/2	?	?	?	?
b	?	?	$6\sqrt{2}$?	- ?	5√3	?	?
c	?	$5\sqrt{2}$?	?	$8\sqrt{6}$?	12	9

30°-60°-90° Theorem In a 30°-60°-90° triangle, the hypotenuse is twice as long as the shorter leg, and the longer leg is $\sqrt{3}$ times as long as the shorter leg.

In a 30°-60°-90° triangle, the shorter leg is opposite the 30° angle and the longer leg is opposite the 60° angle. The theorem says if the shorter leg has length a, then the hypotenuse has length 2a and the longer leg has length $a \sqrt{3}$.

Special Right Triangles (continued)

Example 3 Using the side given, find the other two sides of each 30°-60°-90° triangle.

- **a.** shorter leg: $8\sqrt{3}$
- b. hypotenuse: 12
- c. longer leg: $\sqrt{6}$

Solution

a. hyp.: = (shorter leg)
$$\cdot$$
 2
= $8\sqrt{3} \cdot 2$
= $16\sqrt{3}$
longer leg = (shorter leg) $\cdot \sqrt{3}$
= $8\sqrt{3} \cdot \sqrt{3}$
= 24

b. shorter
$$\log = \frac{\text{hyp.}}{2}$$
 c.
$$= \frac{12}{2}$$

$$= 6$$

$$\log \text{er leg} = (\text{shorter leg}) \cdot \sqrt{3}$$

$$= 6\sqrt{3}$$

$$\begin{array}{c}
\text{c. shorter leg} = \frac{\sqrt{3}}{\sqrt{3}} \\
= \frac{\sqrt{6}}{\sqrt{3}} \\
\sqrt{3} = \frac{\sqrt{2} \cdot \sqrt{3}}{\sqrt{3}} \\
= \sqrt{2} \\
\text{hyp.} = (\text{shorter leg}) \cdot 2 \\
= 2\sqrt{2}
\end{array}$$

Complete the table.

	9.	10.	11.	12.	13.	14.	15.	16.
а	10	?	?	$6\sqrt{2}$?	?	?	?
b	?	?	5√3	? ?	,: 12 ,;	?	15	?
с	?	24	?	?	?	$7\sqrt{3}$?	$2\sqrt{2}$

Find the value of x.

Find the values of x and y.

23. $10\sqrt{2}$

- 26. Find the perimeter of a square if a diagonal has length 12.
- 27. Find the perimeter of an equilateral triangle if an altitude has length $7\sqrt{3}$.