Chapter 6.4 Graphing Trigonometric Functions

Fill out the table with exact values.

x (Deg)	0	30	45	60	90	120	135	150	180	210	225	240	270	300	315	330	360
x (Rad)																	

Graph the $\sin (x)$ over the interval $[0,2 \pi]$. Then use the fact that sine is odd to graph it over $[-2 \pi, 0]$.

Graph the $\cos (x)$ over the interval $[0,2 \pi]$. Then use the fact that cosine is even to graph it over $[-2 \pi, 0]$.

$$
f(x)=\cos (x)
$$

Sinusoidal Axis - The horizontal line on which the graph "hangs". For $f(x)=\sin (x)$ and $g(x)=\cos (x)$, the sinusoidal axis is $\mathrm{y}=0$. Just like in algebra, $\mathrm{f}(\mathrm{x})+\mathrm{D}$ shifts the graph vertically D units.
Graph the following:
$a(x)=\sin (x)+3$
$c(x)=\cos (x)+7$
$b(x)=\sin (x)-4$
$d(x)=\cos (x)-5$

Each of the following was of the form $f(x)=\sin (x)+D$ and $g(x)=\cos (x)+D$. In general how do you find the sinusoidal axis from the equation?

Graphs of sine and cosine rise to a maximum then descend to a minimum.
Amplitude - The maximum distance the graph gets from the sinusoidal axis (not the distance between the maximum and minimum).
$y=-f(x)$ is reflection of $f(x)$ over the x axis.
Graph the following. Pay attention to the amplitude and if the graph heads uphill or downhill from $(0,0)$.
$\begin{array}{ll}y=3 \sin (x) & y=-2 \cos (x)-3 \\ y=4 \sin (x)+3 & y=-5 \cos (x)+1\end{array}$
Each of the functions was of the form $y=A \sin (x)+D$ and $y=A \cos (x)+D$. What does the value of A tell you about the graph?

How can you find the y-value of the maximum and minimum of the graph in terms of A and D ?

Period - The subset of the domain in which the range cycles before it repeats. $y=\sin (x)$ and $y=\cos (x)$ have a period of what?

Just like you can vertically stretch the graph of $f(x)=A \sin (B x)+D$ by increasing the amplitude, you can horizontally stretch the graph of $f(x)$ by making the value of B closer to zero. The period of a trigonometric function depends on the coefficient in front of x, B. The period of $f(x)$ is $2 \pi / B$.
Graph the following.
$e(x)=3 \sin (x / 2)-1$

$$
g(x)=-5 \sin (3 x / 2)
$$

$$
\begin{aligned}
& f(x)=2 \cos (4 x)+3 \\
& h(x)=4 \cos (\pi x)-3
\end{aligned}
$$

1) $y=3 \sin (x)-2$

$A=$ \qquad
$B=$ \qquad

Period $=$ \qquad
S.A.: y = \qquad

Domain: \qquad

Range : \qquad
2) $f(x)=2 \cos (3 x)+1$
$A=$ \qquad
$B=$ \qquad

Period $=$ \qquad

Range : \qquad
$A=$ \qquad
$B=$ \qquad

Period $=$ \qquad
S.A.: y = \qquad

Domain: \qquad

Range : \qquad

4) $g(x)=3 \cos (2 x)+1$
$A=$ \qquad
$B=$ \qquad

Period $=$ \qquad
S.A.: $y=$ \qquad

Domain: \qquad

Range : \qquad

