Chapter 6.4 Graphing Trigonometric Functions

Fill out the table with exact values.

x (Deg)	0	30	45	60	90	120	135	150	180	210	225	240	270	300	315	330	360
x (Rad)																	
sin(x)																	
cos(x)																	

Graph the sin(x) over the interval $[0, 2\pi]$. Then use the fact that sine is odd to graph it over $[-2\pi, 0]$.

Graph the cos(x) over the interval $[0, 2\pi]$. Then use the fact that cosine is even to graph it over $[-2\pi, 0]$.

f(x) = cos(x)

f(x) = sin(x)

Sinusoidal Axis – The horizontal line on which the graph "hangs". For f(x) = sin(x) and g(x) = cos(x), the sinusoidal axis is y = 0. Just like in algebra, f(x) + D shifts the graph vertically D units. Graph the following:

a(x) = sin(x) + 3c(x) = cos(x) + 7b(x) = sin(x) - 4d(x) = cos(x) - 5

Each of the following was of the form f(x) = sin(x) + D and g(x) = cos(x) + D. In general how do you find the sinusoidal axis from the equation?

Graphs of sine and cosine rise to a maximum then descend to a minimum.

Amplitude – The maximum distance the graph gets from the sinusoidal axis (not the distance between the maximum and minimum).

y = -f(x) is reflection of f(x) over the x axis.

Graph the following. Pay attention to the amplitude and if the graph heads uphill or downhill from (0,0).

 y = 3sin(x) y = -2cos(x) - 3

 y = 4sin(x) + 3 y = -5cos(x) + 1

Each of the functions was of the form y = Asin(x) + D and y = Acos(x) + D. What does the value of A tell you about the graph?

How can you find the y-value of the maximum and minimum of the graph in terms of A and D?

Period – The subset of the domain in which the range cycles before it repeats. y = sin(x) and y = cos(x) have a period of what?

Just like you can vertically stretch the graph of f(x) = Asin(Bx) + D by increasing the amplitude, you can horizontally stretch the graph of f(x) by making the value of B closer to zero. The period of a trigonometric function depends on the coefficient in front of x, B. The **period** of f(x) is $2\pi/B$. Graph the following.

e(x) = 3sin(x/2) - 1f(x) = 2cos(4x) + 3g(x) = -5sin(3x/2) $h(x) = 4cos(\pi x) - 3$

Graphing sin(x) and cos(x) Practice

	t	
1) y = 3sin(x) – 2		
A =		
B =		
Period =		•
S.A.: y =		
Domain:		
Range :		

2) f(x)= 2cos(3x)+ 1	· · · · · · · · · · · · · · · · · · ·	
A =		
B =		
Period =		
S.A.: y =		
Domain:		
Range :		

3) y =-2sin(x/2) + 3	<u>†</u>
A =	
В =	
Period =	
S.A.: y =	
Domain:	
Range :	

