Plot1 Plot2 Plot3 $Y1 = \sin(X) - \cos(X) - 1$ \Y2= \Y3= \Y4= \Y5= \Y6= \Y7=

Figure 1

Define the expression on the left side of this equation as function Y₁ (Figure 1) your calculator to radian mode and graph the function using the following win settings.

$$0 \le x \le 2\pi$$
, scale = $\pi/2$; $-3 \le y \le 2$, scale = 1

The solutions of the equation will be the zeros (x-intercepts) of this function. the graph, we see that there are only two solutions. Use the feature of your c lator that will allow you to evaluate the function from the graph, and verify $x = \pi/2$ and $x = \pi$ are x-intercepts (Figure 2). It is clear from the graph $x = 3\pi/2$ is not a solution.

Figure 2

GETTING READY FOR CLASS

After reading through the preceding section, respond in your own words in complete sentences.

- **a.** What is the first step in solving the equation $2 \cos x 1 = \sec x$?
- b. Why do we need 0 on one side of a quadratic equation in order to solv equation?
- c. How many solutions between 0 and 2π does the equation $\cos x = 0$
- d. How do you factor the left side of the equation $2\sin\theta\cos\theta + \sqrt{2}\cos\theta = 0$?

PROBLEM SET 6.2

Solve each equation for θ if $0^{\circ} \le \theta < 360^{\circ}$. Give your answers in degrees

1.
$$\sqrt{3} \sec \theta = 2$$

3.
$$\sqrt{2} \csc \theta + 5 = 3$$

5.
$$4 \sin \theta - 2 \csc \theta = 0$$

7.
$$\sec \theta - 2 \tan \theta = 0$$

9.
$$\sin 2\theta - \cos \theta = 0$$

11. $2 \cos \theta + 1 = \sec \theta$

2.
$$\sqrt{2} \csc \theta = 2$$

4.
$$2\sqrt{3} \sec \theta + 7 = 3$$

6.
$$4\cos\theta - 3\sec\theta = 0$$

8.
$$\csc \theta + 2 \cot \theta = 0$$

10.
$$2 \sin \theta + \sin 2\theta = 0$$

$$12. \ 2\sin\theta - 1 = \csc\theta$$

nction Y1 (Figure 1). Set ig the following window

$$ale = 1$$

ts) of this function. From he feature of your calcune graph, and verify that ear from the graph that

in your own words and

$$x - 1 = \sec x?$$

ion in order to solve the

equation
$$\cos x = 0$$
 con-

answers in degrees.

$$= 2$$

$$\theta + 7 = 3$$

$$3 \sec \theta = 0$$

$$\cot \theta = 0$$

$$\sin 2\theta = 0$$

$$1 = \csc \theta$$

Solve each equation for x if $0 \le x < 2\pi$. Give your answers in radians using exact values only.

13.
$$\cos 2x - 3 \sin x - 2 = 0$$

$$15. \cos x - \cos 2x = 0$$

17.
$$2\cos^2 x + \sin x - 1 = 0$$

21.
$$2 \sin x + \cot x - \csc x = 0$$

23.
$$\sin x + \cos x = \sqrt{2}$$

Solve for θ if $0^{\circ} \le \theta < 360^{\circ}$.

25.
$$\sqrt{3} \sin \theta + \cos \theta = \sqrt{3}$$

$$27. \sqrt{3} \sin \theta - \cos \theta = 1$$

$$29. \sin \frac{\theta}{2} - \cos \theta = 0$$

31.
$$\cos \frac{\theta}{2} - \cos \theta = 1$$

14.
$$\cos 2x - \cos x - 2 = 0$$

16.
$$\sin x = -\cos 2x$$

18.
$$2 \sin^2 x - \cos x - 1 = 0$$

20.
$$4\cos^2 x - 4\sin x - 5 = 0$$

22.
$$2 \cos x + \tan x = \sec x$$

24.
$$\sin x - \cos x = \sqrt{2}$$

26.
$$\sin \theta - \sqrt{3} \cos \theta = \sqrt{3}$$

28. $\sin \theta - \sqrt{3} \cos \theta = 1$

28.
$$\sin \theta - \sqrt{3} \cos \theta = 1$$

30.
$$\sin \frac{\theta}{2} + \cos \theta = 1$$

$$32. \cos \frac{\theta}{2} - \cos \theta = 0$$

33.
$$6\cos\theta + 7\tan\theta = \sec\theta$$

34. 13 cot
$$\theta$$
 + 11 csc θ = 6 sin θ

35.
$$23 \csc^2 \theta - 22 \cot \theta \csc \theta - 15 = 0$$

36.
$$18 \sec^2 \theta - 17 \tan \theta \sec \theta - 12 = 0$$

37.
$$7 \sin^2 \theta - 9 \cos 2\theta = 0$$

38.
$$16\cos 2\theta - 18\sin^2\theta = 0$$

Write expressions that give all solutions to the equations you solved in the problems given below.

45. Physiology In the human body, the value of θ that makes the following expression 0 is the angle at which an artery of radius r will branch off from a larger artery of radius R in order to minimize the energy loss due to friction. Show that the following expression is 0 when $\cos \theta = r^4/R^4$.

$$r^4 \csc^2 \theta - R^4 \csc \theta \cot \theta$$

46. Physiology Find the value of θ that makes the expression in Problem 45 zero, if r = 2 mm and R = 4 mm. (Give your answer to the nearest tenth of a degree.)

Solving the following equations will require you to use the quadratic formula. Solve each equation for θ between 0° and 360° , and round your answers to the nearest tenth of a degree.

47.
$$2 \sin^2 \theta - 2 \cos \theta - 1 = 0$$

48.
$$2\cos^2\theta + 2\sin\theta - 1 = 0$$

49.
$$\cos^2\theta + \sin\theta = 0$$

50.
$$\sin^2 \theta = \cos \theta$$

51.
$$2 \sin^2 \theta = 3 - 4 \cos \theta$$

52.
$$4 \sin \theta = 3 - 2 \cos^2 \theta$$

We your graphing calculator to find all radian solutions in the interval $0 \le x < 2\pi$ for each of the following equations. Round your answers to four decimal places.

$$53. \cos x + 3 \sin x - 2 = 0$$

54.
$$2\cos x + \sin x + 1 = 0$$

55.
$$\sin^2 x - 3 \sin x - 1 = 0$$

56.
$$\cos^2 x - 3\cos x + 1 = 0$$

57.
$$\sec x + 2 = \cot x$$

58.
$$\csc x - 3 = \tan x$$