Name: \qquad Period: \qquad Date: \qquad

6.2 Incenter and Circumcenter Practice Problems

Circle the letter with the name of the segment/line/ray shown.
1.

(a) perpendicular bisector
(b) angle bisector
(c) median
(d) altitude
2.

(a) perpendicular bisector
(b) angle bisector
(c) median
(d) altitude
3.

(a) perpendicular bisector
(b) angle bisector
(c) median
(d) altitude
4.

(a) perpendicular bisector
(b) angle bisector
(c) median
(d) altitude
5. Each angle bisector meets at the point of concurrency called the \qquad .
6. Each perpendicular bisector meets at the point of concurrency called the \qquad .
7. It is equidistant from the three vertices of the triangle.
(a) circumcenter
(b) incenter
(c) centroid
(d) orthocenter

It is equidistant from the three sides of the triangle.
(a) circumcenter
(b) incenter
(c) centroid
(d) orthocenter

ALGEBRA Lines a, G, and c are perpendicular bisectors of $\triangle P Q R$ and meet at A.

8. Find x.
9. Find y.
10. Find z.

Use the picture on the right for 11-13.
Rays AE, BE, and CE are angle bisectors.
D is the intersection of the perpendicular bisectors.
11) $F E=6 x-7, E H=35$, find $E G$.

13) Angle $F A E=10 x+5 y$, Angle $H A E=10 y+5, B D=x+y, C D=3 x-1$, Find $D C$ and angle FAH.
14) Find the coordinates of the circumcenter of the triangle using graph paper, then check it with geogebra.
$\mathrm{A}(2,6) \mathrm{B}(8,6) \mathrm{C}(8,10)$

