Name:	 	
Period-		

Date: Pre-Calculus: Intro to Conics

Conic Sections:

Name

- 1. Circle
- 2. Ellipse
 3. Hyperbola
- 4. Parabola

These graphs are called conic sections. A plane cutting, or sectioning a cone forms conics. They are relations whose equations are quadratics with two variables.

The general form of a conic section is $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$

To recognize conic sections from this equation, follow these general rules: (*** for these rules to apply, B=0)

- 1. The conic is C_{rel} if x^2 and y^2 have equal coefficients.
- 2. The conic is Ellipse if x^2 and y^2 have unequal coefficients, but the same sign.
- 3. The conic is Hyps/bolg if x² and y² have opposite signs.
 4. The conic is Fart by g if only one of the two variables is squared.

Now Practice! Identify the conic.

1.
$$x^2 + 4y^2 + 5x + 6y = 100$$

2.
$$x^2 - 4y^2 + 5x + 6y = 100$$

3.
$$-x^2 + 4y^2 + 5x + 6y = 100$$

4.
$$4x^2 + 4y^2 + 5x + 6y = 100$$

$$5. \quad 4x^2 + 5x + 6y = 100$$

6.
$$4y^2 + 5x + 6y = 100$$

The set of all points P(x, y) in the plane that are 5 unit from the point C(2, 4) is a *circle*

Find the equation of the circle

Use your Distance Formula!!

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

What do you know that the distance of *CP* has to be?

In General

If P(x, y) is on the circle with center C(h, k) and radius r, then:

$$(x-h)^2 + (y-k)^2 = r^2$$

Write the equation of the circle:

• Center (0, 0) and Radius = 4 • Center (-1, 7) and Radius = 3 • Center (4, -4) and Radius = 9 • Center (-3, -10) and Radius = 6 • $(X+1)^2 + (Y-7)^2 = 3^2$ • $(X+1)^2 + (Y+1)^2 = 9^2$ • $(X+2)^2 + (Y+1)^2 = 6^2$ Find the Center and Radius for each of the following 4 equations

①
$$(x-4)^2 + (y-2)^2 = 16$$

② $(x+5)^2 + (y-1)^2 = 20$
③ $(x-9)^2 + y^2 = 48$
④ $x^2 - 6x + y^2 + 20y + 84 = 0$

$$x^2 - 6x + y^2 + 20y + 84 = 0$$

We need to COMPLETE THE SQUARE!!!

$$X^{2}-6X+y^{2}+20y+84=0$$

$$X^{2}-6X+y^{2}+20y=-84$$

$$X^{2}-6X+9+y^{2}+20y+100=-89+9+100$$

$$(X-3)^{2}+(y+0)^{2}=25$$

$$C=(3,-10) \Gamma=5$$

Name: _		_
Period:		

Date:

Pre-Calculus: 6.2 Circles Extra Practice

Directions: Complete the square for the following conics in standard form. After writing the equation in (h, k) form, identify the center, radius, and draw a sketch.

Follow these steps!!

- 1. Group like terms together and move the constant to the other side.
- Complete the square for x and y.(Take half of the coefficient of x and y, square it, and add it to both sides)*You may not always complete the square for both x and y!
- 3. Factor each perfect square trinomial to a binomial squared.
- 4. Identify the center, radius, and draw a sketch of the graph.

EXAMPLE:

$$x^2 - 6x + v^2 + 20v + 84 = 0$$

$$x^2 - 6x + y^2 + 20y = -84$$

$$x^2 - 6x + 9 + y^2 + 20y + 100 = -84 + 9 + 100$$

$$x^2 - 6x + 9 + y^2 + 20y + 100 = 25$$

$$(x-3)^2 + (y+10)^2 = 25$$

Center: (3,-10)

Radius: 5

1.
$$x^{2}-8x+y^{2}-2y+13=0$$

 $x^{2}-8x+1/6+y^{2}-2y+1=-13+1/6+1$
 $(x-4)^{2}+(y-1)^{2}=4$

2.
$$x^{2} + 6x + y^{2} - 7 = 0$$

 $x^{2} + 6x + 9 + y^{2} = 7_{1}9$
 $(x+3)^{2} + y^{2} = 416$

3.
$$x^2 + y^2 - 100 = 0$$

 $x^2 + y^2 = 100$

4.
$$x^{2} + 8x + y^{2} + 14y + 55 = 0$$

 $X^{2} + 8x + 16 + y^{2} + 17y + 49 = -55 + 16 + 49$
 $(X + 4)^{2} + (Y + 7)^{2} = M + 10$

5.
$$x^{2}+10x+y^{2}-2y-118=0$$

 $\chi^{2}+10x+25+y^{2}-2y+1=118+26$
 $(\chi+5)^{2}+(\gamma-1)^{2}=114$

6.
$$x^{2}-12x+y^{2}-4y+4=0$$

 $\chi^{2}-12x+36+y^{2}-4y+4=-4+4+36$
 $(\chi-6)^{2}+(\gamma-2)^{2}=36$

7.
$$x^{2} + 10x + y^{2} - 14y + 49 = 0$$

 $x^{2} + 10x + 1000 + y^{2} - 14y + 49 = 0$
 $(X + 1005)^{2} + (y - 7)^{2} = 25$

8.
$$x^{2}-18x+y^{2}-6y+9=0$$

 $\chi^{2}-18\chi+8l+y^{2}-6y+9=8l$
 $(\chi-9)^{2}+(\gamma-3)^{2}=8l$

9.
$$x^{2} + 4x + y^{2} + 12y + 39 = 0$$

 $X^{2} + 4x + y^{2} + 12y + 36 = -39 + 36 + 4$
 $(X^{2} + 2)^{2} + (y + 6)^{2} = 1$

10.
$$x^{2}-16x+y^{2}+24y+199=0$$

 $(x^{2}-16x+64+y^{2}+24y+194=-199+194+64)$
 $(x^{2}-8)^{2}+(y+12)^{2}=9$