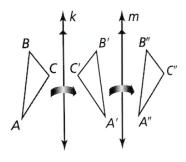
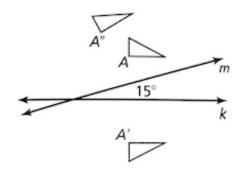
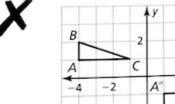
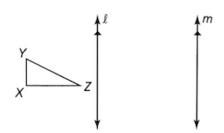

4-4-Congruence and Transformations - Homework

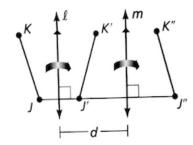

1) Identify any congruent figures in the coordinate plane. Explain.


2) Describe a congruence transformation that maps WXYZ onto PQRS.



- 3) Determine whether the polygons with the given vertices are congruent. Use transformations to explain your reasoning.
 - a. Q(2, 4), R(5, 4), S(4, 1) and T(6, 4), U(9, 4), V(8, 1)
 - b. W(-3, 1), X(2, 1), Y(4, -4), Z(-5, -4) and C(-1, -3), D(-1, 2), E(4, 4), F(4, -5)
 - c. J(1, 1), K(3, 2), L(4, 1) and M(6, 1), N(5, 2), P(2, 1)
- 4) $k \mid\mid m$, $\triangle ABC$ is reflected in line k and $\triangle A'B'C'$ is reflected in line m.
 - a. A translation maps $\triangle ABC$ onto which triangle?
 - b. Which lines are perpendicular to \overline{AA} "?
 - c. If the distance between k and m is 2.6 inches, what is the length of \overline{CC} ?
 - d. Is the distance from *B'* to *m* the same as the distance from *B''* to *m*? Explain.


- 5) Find the angle of rotation that maps A onto A".
- 6) Describe and correct the error in describing the congruence transformation.


 $\triangle ABC$ is mapped to $\triangle A''B''C''$ by a translation 3 units down and a reflection in the y-axis.

- 7) Find the measure of the acute or right angle formed by intersecting lines so that *C* can be mapped to *C'* using two reflections.
 - a. A rotation of 84° maps C to C'
- b. The rotation $(x,y) \rightarrow (-x,-y)$ maps C to C'
- 8) Tell whether the statement is always, sometimes, or never true. Explain your reasoning.
 - a. A congruence transformation changes the size of a figure.
 - b. If two figures are congruent, then there is a rigid motion or a composition of rigid motions that maps one figure onto the other.
 - c. The composition of two reflections results in the same image as a rotation.
 - d. A translation results in the same image as the composition of two reflections.
- 9) \overline{PQ} , with endpoints P(1,3) and Q(3,2), is reflected in the y-axis. The image $\overline{P'Q'}$ is then reflected in the x-axis to produce the image $\overline{P''Q''}$. One classmate says that \overline{PQ} is mapped to $\overline{P''Q''}$ by the translation $(x,y) \rightarrow (x-4,y-5)$. Another classmate says that \overline{PQ} is mapped to $\overline{P''Q''}$ by a 180° rotation about the origin. Which classmate is correct? Explain your reasoning.
- 10) Does the order of reflections for a composition of two reflections in parallel lines matter? For example, is reflecting ΔXYZ in the line l and then its image in the line m the same as reflecting ΔXYZ in the line m and then in the line l?

11) Given: A reflection in line l maps \overline{JK} to $\overline{J'K'}$, a reflection in line m maps $\overline{J'K'}$ to $\overline{J''K''}$, and $l \parallel m$

Prove: KK'' = 2d where d is the distance between l and m.

