\qquad Date: \qquad

Thanksgiving 4.1-4.3 Review

Directions: Get this done in class, but if you run out of time, it is due the next class after thanksgiving. This is everything you should know in unit 4 to this point.

1. True/False A translation is an isometry.
2. True/False A rotation is an isometry
3. True/False A reflection is an isometry
4. The vector $\langle 3,-1\rangle$ describes the translation of $K(2 x-1,8)$ onto $K^{\prime}(10,4 y-5)$. Find the values of x and y.
5. The point A is translated using the rule $(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}+5, \mathrm{y}-3)$ resulting in the image $A^{\prime}(5,4)$. Find the coordinates of point A .
6. Graph quadrilateral ABCD with endpoints $\mathrm{A}(2,2), \mathrm{B}(4,2), \mathrm{C}(4,0)$ and $\mathrm{D}(2,0)$, the line of reflection, and its image after the composition. (Note: When you rotate, you are rotating the image after reflecting over $\mathrm{y}=-\mathrm{x}$, not the preimage.)

Reflection: over the line $y=-x$ Rotation: 90° clockwise about $(0,0)$

7. Do the following figures have rotational symmetry? If yes, what degree(s) measure?
a.

b.

8. Graph $\Delta C A T$ with vertices $\mathrm{C}(4,1), \mathrm{A}(7,3)$, and $\mathrm{T}(6,4)$ and its image after the composition of transformations. Be sure to clearly label your final image and place the coordinates of its vertices on the lines provided.

Rotation: 180 degrees about $(0,0)$
Reflection: over $x=-1$

9. Record the coordinates after each part of the composition of transformations on segment $A(-2,3) B(0,7)$
a) 90 degree counterclockwise rotation about the origin. $A^{\prime}\left(, \quad B^{\prime}(\right.$,
b) Reflect over the x-axis. A" (,) B" (,)
c) Reflect over $\mathrm{x}=0 . \mathrm{A}$ "' \quad, $) \mathrm{B}$ '" (\quad, \quad)
d) 180 degree rotation about the origin.

