4-3-Rotations - Homework

- 1) Trace the polygon and point *P*. Then draw a rotation of the polygon about point *P* using the given number of degrees and direction.
 - a. 80° clockwise rotation

b. 150° counterclockwise rotation

- 2) Graph the polygon and its image after a rotation of the given number of degrees about the origin.
 - a. 180° clockwise

b. 270° counterclockwise

- 3) Graph \overline{XY} with endpoints X(-3, 1) and Y(4, -5) and its image after the composition.
 - a. Rotation: 180° about the origin, clockwise; Translation: $(x,y) \rightarrow (x-1,y+1)$
 - b. b. Reflection: in the line y = x; Rotation: 90° about the origin, counterclockwise
- 4) Determine whether the figure has rotational symmetry. If so, describe any rotations that map the figure onto itself.

a

b.

c

5) ΔXYZ has vertices X(2, 5), Y(3, 1), and Z(0, 2). Rotate the triangle 90° counterclockwise about the point P(-2, -1).

- 6) Select the angles of rotational symmetry for each regular polygon. Select all that apply.
 - a. 30°
- b. 45°
- c. 60°
- d. 72°

- e. 90°
- f. 120°
- g. 144°
- h. 180°

- 7) Use the graph of y = 2x 3.
 - a. Rotate the line 90°, 180°, 270°, and 360° counterclockwise about the origin. Write the equation of the line for each image. Describe the relationship between the equation of the preimage and the equation of each image.
- 8) Follow these steps to construct a rotation of $\triangle ABC$ by angle D around a point O. Use a compass and a straightedge.
 - a. Step 1 Draw $\triangle ABC$, $\angle D$, and O, the center of rotation.
 - b. Step 2 Draw \overline{OA} . Use the construction for copying an angle to copy $\angle D$ at O, as shown. Then use distances OA and center O to find A'.
 - c. Step 3 Repeat Step 2 to find points B' and C'. Draw $\Delta A'B'C'$

9) A polar coordinate system locates a point in a plane by its distance from the origin O and by the measure of an angle with its vertex at the origin. For example, the point $A(2, 30^{\circ})$ is 2 units from the origin and $m \angle XOA = 30^{\circ}$. What are the polar coordinates of the image of point A after a 90° rotation counterclockwise? a 180° rotation counterclockwise?

