4.2 Reflections

- 1) Determine if the coordinates give the lines of reflection
 - a) ABC over the y axis
 - b) ABC over the x axis
 - c) DEF over y = x.
 - d) DEF over y = -x.

2) Determine if the coordinate plane shows a reflection over the lines x = 0, y = 0, or neither.

3) Graph ΔMAN and its image over the line of reflection. M(2, -1), A(4, -5), N(3, 1) reflect over x = -1

4) Graph $\triangle SON$ and its image over the line of reflection. S(2, 4), O(-4, -2), N(-1, 0) reflect over y = 1

5) Graph the line of reflection and the image over y = x.

6) Graph the line of reflection and the image over y = -x.

7) Graph ΔBAT with vertices B(4, 1), A(7, 3), and T(6, 4) and its image after the glide reflection.

Translation: $(x, y) \rightarrow (x, y - 1)$

Reflection: over x = 0

8) Draw and determine the number of lines of symmetry in the figure.

9) Describe and correct the error in describing the transformation.

 \overline{AB} to $\overline{A''B''}$ is a glide reflection.

10) Use the numbers and symbols to create the glide reflection resulting in the image shown.

Translation: $(x, y) \rightarrow ($

Reflection: over y = x.

x

у

1

2

3

+

_