Worksheet 9.4b: Function Composition

For #1-6, find $f\circ g$ and $g\circ f$. State the domain of the each new function.

1)
$$f(x) = 2x - 3$$
 $g(x) = 3x$

2)
$$f(x) = x^2$$
 $g(x) = 5x$

3)
$$f(x) = \frac{1}{2}x - 3$$
 $g(x) = \frac{1}{4}x$

4)
$$f(x) = -3x + 3$$
 $g(x) = 6x$

5)
$$f(x) = \frac{3}{x+2}$$
 $g(x) = 4x+1$

6)
$$f(x) = \sqrt{2x}$$
 $g(x) = 18x^2$

- 7) The cost function, in dollars, for producing microchips is given by C(m) = 1.35m + 200, where x is the number of microchips produced. The number of microchips produced is M(t)=20t , where t is the number of hours of production.
 - a. Give the cost, C, as a function of time, t-- find $\,C(M(t))\,.$
 - b. Find the cost of the production run that lasts 8 hours.
 - c. How many microchips are produced in 8 hours?

For #8-13, given the following functions, find each composite function value.

$$h(x) = 2x + 5$$

$$g(x) = x^2 -$$

$$h(x) = 2x + 5$$
 $g(x) = x^2 - 1$ $f(x) = \frac{-1}{2}x + \frac{3}{2}$

8)
$$(h \circ g)(-1)$$

9)
$$(f \circ g)(-6)$$

10)
$$(g \circ g)(-3)$$

11)
$$(g \circ f)(-6)$$

12)
$$(h \circ f)(5)$$

$$\mathbf{13)}(h \circ h) \left(\frac{2}{3}\right)$$