_____ Period:_____ Date:_____

Name: _____

2.4 Transforming Graphs Investigation

1. Graph the function $f(x) = x^2$.

	1			0 ()			
Х							
f(x)							

2. Using your graphing calculator, graph the following parabolas and describe the transformations as compared to the standard graph of $f(x) = x^2$. In your comparison, make sure to include the changes in vertices, shape of the graph, and position on the coordinate plane.

a.	$f(x) = x^2 + 4$	
b.	$f(x) = x^2 - 4$	
c.	$f(x) = (x+4)^2$	
d.	$f(x) = (x-4)^2$	
e.	$f(x) = 4x^2$	
f.	$f(x) = \frac{1}{4}x^2$	
g.	$f(x) = -x^2$	

- 3. Predict the phase shifts that will occur for the graph of $f(x) = (x-3)^2 + 6$. Then, use the graphing calculator to check your prediction.
- 4. Graph the equation f(x) = |x|.

Х				
f(x)				

- 5. Using your graphing calculator, graph the following functions and describe the transformations as compared to the standard graph of f(x) = |x|. In your comparison, make sure to include the changes in vertices, shape of the graph, and position on the coordinate plane.
- a. f(x) = |x| + 5
- b. f(x) = |x| 5

- c. f(x) = |x+5|
- d. f(x) = |x-5|
- e. f(x) = 5|x|
- f. $f(x) = \frac{1}{5} |x|$
- g. f(x) = -|x|
- 6. Predict the phase shifts that will occur for the graph of f(x) = |x+4| 3. Then, use the graphing calculator to check your prediction.
- 7. a. Graph $y = x^2$ and $y = -x^2$.
 - b. Graph $y = x^3 + 2x^2$ and $y = -(x^3 + 2x^2)$.

c. What do you notice? What can you generalize about the graphs of y = f(x) and y = -f(x)?

- 8. a. Graph y = 2x 1 and y = 2(-x) 1.
 - b. Graph $y = \sqrt{x}$ and $y = \sqrt{-x}$
 - c. What do you notice? What can you generalize about the graphs of y = f(x) and y = f(-x)
- 9. Sketch a graph of each of the parent functions.
 f(x) = c
 f(x) = x

 $f(x) = \sqrt{x}$

 $f(x) = x^2$

 $f(x) = x^3$

f(x) = |x|