Lesson 2.4 • Deductive Reasoning

Name \qquad Period \qquad Date \qquad

1. $\triangle A B C$ is equilateral. Is $\triangle A B D$ equilateral? Explain your answer. What type of reasoning, inductive or deductive, do you use when solving this problem?

2. $\angle A$ and $\angle D$ are complementary. $\angle A$ and $\angle E$ are supplementary. What can you conclude about $\angle D$ and $\angle E$? Explain your answer. What type of reasoning, inductive or deductive, do you use when solving this problem?
3. Which figures in the last group are whatnots? What type of reasoning, inductive or deductive, do you use when solving this problem?

a.

b.

c.

Whatnots

Not whatnots
d.

e.

Which are whatnots?
4. Solve each equation for x. Give a reason for each step in the process. What type of reasoning, inductive or deductive, do you use when solving these problems?
a. $4 x+3(2-x)=8-2 x$
b. $\frac{19-2(3 x-1)}{5}=x+2$
5. A sequence begins $-4,1,6,11 \ldots$
a. Give the next two terms in the sequence. What type of reasoning, inductive or deductive, do you use when solving this problem?
b. Find a rule that generates the sequence. Then give the 50th term in the sequence. What type of reasoning, inductive or deductive, do you use when solving this problem?

Lesson 2.5•Angle Relationships

Name \qquad Period \qquad Date \qquad

For Exercises 1-6, find each lettered angle measure without using a protractor.
1.

2.

3.

4.

5.

6.

For Exercises 7-10, tell whether each statement is always (A), sometimes (S), or never (N) true.
7. \qquad The sum of the measures of two acute angles equals the measure of an obtuse angle.
8. \qquad If $\angle X A Y$ and $\angle P A Q$ are vertical angles, then either X, A, and P or X, A, and Q are collinear.
9. \qquad If two angles form a linear pair, then they are complementary.
10. \qquad If a statement is true, then its converse is true.

For Exercises 11-15, fill in each blank to make a true statement.
11. If one angle of a linear pair is obtuse, then the other is \qquad .
12. If $\angle A \cong \angle B$ and the supplement of $\angle B$ has measure 22°, then $m \angle A=$ \qquad .
13. If $\angle P$ is a right angle and $\angle P$ and $\angle Q$ form a linear pair, then $m \angle Q$ is \qquad .
14. If $\angle S$ and $\angle T$ are complementary and $\angle T$ and $\angle U$ are supplementary, then $\angle U$ is $\mathrm{a}(\mathrm{n})$ \qquad angle.
15. Switching the "if" and "then" parts of a statement changes the statement to its \qquad -.

