Pre-Calculus Review -- Ch 15.5

Name		
Period	Date	

1	The polynomial $a+b$ is called a	1 '- 1
	The notynomial $a+b$ is called a	because it has two terms.
	The polyholillar a 10 is called a	occause it has two terms.

- 2. Consecutive powers of a+b [e.g., $(a+b)^1$, $(a+b)^2$, $(a+b)^3$, etc.] are referred to collectively as the ______ Expansion.
- 3. The _____ Theorem tells us that for any positive integer n $(a+b)^n = {}_n C_0 a^n b^0 + {}_n C_1 a^{n-1} b^1 + {}_n C_2 a^{n-2} b^2 + \dots + {}_n C_n a^0 b^n$
- 4. $_{n}C_{r} =$ in factorial notation.
- 5. For any positive integer n, ${}_{n}C_{0} = \underline{\hspace{1cm}}; {}_{n}C_{1} = \underline{\hspace{1cm}}; {}_{n}C_{n} = \underline{\hspace{1cm}}$

6.
$$a^0 = \underline{\hspace{1cm}}; b^1 = \underline{\hspace{1cm}}; a^m a^n = \underline{\hspace{1cm}}; \frac{a^m}{a^n} = \underline{\hspace{1cm}}; (a^m)^n = \underline{\hspace{1cm}}; (-1)^n = \underline{\hspace{1cm}}$$

7. Complete Pascal's Triangle through n = 10:

n Coefficients of $(a+b)^n$ 1 1 1

2 3

4 5

6 7

8 9

- 8. For the expansion of $(a+b)^n$ where $n\ge 5$, provide the following:
 - a. The coefficient of the 5th term is _____
 - b. The exponent of a in the 5th term is _____
 - c. The exponent of b in the 5th term is _____
 - d. For any term, the sum of the exponents of a and b is always _____
 - e. The entire 5th term is _____

9. Expand each of the following:

a.
$$(x^2 - y^2)^3 =$$

b.
$$(2x^2-1)^4 =$$

c.
$$(x^2+2)^3 =$$

10. In the expansion of $(a+b)^{15}$, find

- b. The 10th term
- 11. In the expansion of $(a-b)^{15}$, find:

- b. The 10th term _____
- 12. Find the 8th term of $(p+q)^{50}$
- 13. Find the coefficient of x^2 in the expansion of $\left(x \frac{1}{x}\right)^{10}$
- 14. Find the coefficient of x^{10} in the expansion of $(x^2-1)^9$