Find θ if θ is between 0° and 90° . Round your answers to the nearest tenth of a degree.

1. $\cos \theta = 0.3256$ $\theta = 71^{\circ}$ $\sin \theta = 0.9077$

Now set up \triangle ABC with $C = 90^{\circ}$ and solve for the unknown angles and sides. Round all answers to the nearest tenth.

Now set up \triangle ABC with $C = 90^{\circ}$ and solve for the unknown angles and sides. Round all answers to the nearest tenth.

The circle has its center at C and radius of 18 inches. If triangle ABC is a right triangle and A=35°, find x, the distance from A to B.

4. Use the information given in the diagram to solve the triangle to the nearest degree.

7. In 1897, a Ferris Wheel was built in Vienna that still stands today. It is named Riesenrad, which translates to the *Great Wheel*. The diameter of the Riesenrad is 197 feet. The top of the wheel stands 209 feet above the ground. The figure show below is a model of the Riesenrad with angle θ as the central angle that is formed as a rider moves from the initial position P_0 to position P_1 . The rider is **h** feet above the ground at position P_1 . Round to the nearest tenth. Find h if θ =40° and find h if θ =75°.

- a. Find h if $\theta = 40^{\circ}$.
- b. Find h if $\theta = 75^{\circ}$

a)
$$\cos 40^\circ = \frac{x}{98.5}, x=75.5$$

197

5. Complete the triangle.

The circle has its center at C and a radius of 10 inches. If a triangle ADC is a right triangle and A is 40°, find x, the distance from A to B.

$$Sin40 = \frac{10}{X+10}$$
(Sin40)(X+10) = 10
$$(4279=10)$$

$$X = 5.6$$
A
$$X = 5.6$$
10

6. If AC= 19, h=32 and C=49°, find $\angle ABD$.

Solve for x, given $\angle A = 38^{\circ}$ and

 $\angle D = 54^{\circ}$. (Hint: Create two equations and solve the system of equations!)

B

Tan 54 = $\frac{h}{x}$ 7 h = X. Tan 54

